script

Computer Science: Software Engineering

The bachelor of science in computer science-software engineering major is designed for students wishing to find positions as computer scientists, as software developers, or to pursue graduate study. The major requires a core of computer science courses (23 hours) covering essential elements of the Computer Science Body of Knowledge that all computer science graduates must master. In addition to the core computer science courses, 15 additional hours of computer science course work in hardware, systems, theory, and software engineering is required. The major also requires 8 hours of support work in mathematics. Students are strongly encouraged to complete an internship as additional coursework.

Students may not pursue both the bachelor of science in computer science-game development and the bachelor of science in computer science-software engineering.

A grade of C- or higher must be achieved in all 200-level courses listed below. 

Required Courses (38 hrs.) 

CSCI 241: Discrete Mathematics
3 credit hours

Prerequisite: MATH 211MATH 231; or MATH 236
This course includes propositional logic, induction and recursion, number theory, set theory, relations and functions, graphs and trees, and permutations and combinations.

CSCI 251: Introduction to Computer Science
4 credit hours

Prerequisite:  Two years of high school algebra. 
An introduction to computer science through applications such as media. A major component is programming design and development using a language such as Python or Java. A disciplined approach to problem solving methods and algorithm development will be stressed using top-down design and stepwise refinement. Topics included are syntax and semantics, I/O, control structures, modularity, data types, and object-oriented programming.

CSCI 261: Data Structures
4 credit hours

Prerequisite: CSCI 251. Students must receive a grade of C or better in the prerequisites.
An in-depth study of data structures, including arrays, records, stacks, queues, lists, trees, heaps and hash tables. The study includes the definition, specification, and implementation of these structures, as well as examples of their uses. Also included is an introduction to the internal representation of information.

CSCI 262: Algorithms
3 credit hours

Prerequisite:  CSCI 261MATH 231 or MATH 236. Students must receive a grade of C or better in the prerequisites. 
This course examines the design and efficiency of sequential and parallel algorithms. The algorithms studied include sorting and searching, pattern matching, graph algorithms and numerical algorithms. Standard algorithmic paradigms are studied such as divide and conquer, greedy methods and dynamic programming. We will consider the time and space complexity analysis of sequential and parallel algorithms and proofs of algorithm correctness.

CSCI 277: Web and Mobile Application Development
3 credit hours

Prerequisite: CSCI 251. 
An examination of both web-based and mobile applications. The course covers the design of client-server architectures, client side scripting, user interface design, and application and database interaction.

CSCI 351: Programming Languages
3 credit hours

Prerequisite:  CSCI 262MATH 232. 
This course includes the history, design and implementation of various programming languages. The strengths and weaknesses of each language will be studied and the comparisons among the languages will be highlighted. Specific languages studied may include a scientific language, an object-oriented language, a functional language, a logic programming language, a scripting language and a database query language. Also included will be brief introductions to compiler design and to automata and formal language theory.

CSCI 355: Database
3 credit hours

Prerequisites: CSCI 261 and CSCI 277. 
A detailed examination of the use of database management systems. Topics include conceptual design, logical design, physical design, normalization, relational algebra, SQL queries, and an introduction to transaction processing.

CSCI 371: Software Engineering
3 credit hours

Prerequisite:  CSCI 262. 
Systems engineering concepts for the design and implementation of computing projects. Project life cycle studies include rapid prototyping paradigms as well as the classical cycle of requirements, design and implementation phases. Project management is discussed, including considerations in selecting hardware platforms. The methodologies are reinforced through a group project. Must be taken in the junior year.

CSCI 495: Research and Development I
3 credit hours

Prerequisite: CSCI 351CSCI 355, and CSCI 371
First semester in the capstone course sequence. Experience in research and development of computer software with emphasis on requirement specification and design. Requires team development of a project plan, requirements specification, and design specification. May require the development of a prototype. Development must follow an established software development process. Includes exploration of the ethical and professional responsibilities of a software developer. This course has been approved as an Honors qualified course.

CSCI 496: Research and Development II
3 credit hours

Prerequisite: CSCI 495 with a grade of C or better. 
Second semester capstone sequence. Continuation of the software development project started in CSCI 495 with emphasis on detailed design, implementation, and delivery. Requires refinement of the requirements specification, design specification, implementation of the design, delivery of the application, customer training, and participation in departmental assessment activities. This course has been approved as an Honors qualified course.

Choose One: 

CSCI 331: Operating Systems
3 credit hours

Prerequisite:  CSCI 262. 
The concepts underlying operating systems are studied. Topics include file systems, COS scheduling, memory management, deadlocks, concurrent processes and protection.

CSCI 361: Computer Organization
3 credit hours

Prerequisite:  CSCI 262. 
A detailed study designed to teach the building blocks of a computer system and basic computer organization concepts. Subjects include hardware, machine code, assembly language, compilers, operating systems and high-level languages, as well as digital logic, performance issues and binary arithmetic.

Choose One: 

CSCI 453: Formal Language Theory
3 credit hours

Prerequisite: CSCI 351 or MATH 234. 
A formal study of the mathematical basis for computer software. The following topics are included: finite automata, regular expressions, context-free languages, pushdown automata, Turing machines, decidability and computability.

CSCI 454: Compiler Theory
3 credit hours

Prerequisite:  CSCI 351
The translation of high-level languages into low?level languages is studied, including syntax definition, lexical analysis, syntax analysis and the role of the parser. Other topics include type checking, run-time environments, code generation and code optimization.

Support Courses (8 hrs.)

MATH 231: Calculus I
4 credit hours

Prerequisite:  Two years of high school algebra and one semester of high school trigonometry. 
A study of the fundamental principles of analytic geometry and calculus with an emphasis on differentiation.

MATH 232: Calculus II
4 credit hours

Prerequisite:  MATH 231 or MATH 236. It is recommended that students receive a grade of C or better in MATH 231 or MATH 236 to be successful in this course. 
Continuation of Calculus I including techniques of integration and infinite series.